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Siemens AI Challenge
Scalable Voting Approach based on Genetic

Algorithms

Abstract—We propose the use of a voting system for classifica-
tion and the PAC-Bayes theorem to bound the mis-classification
error. Our system leverages the power of genetic algorithms to
create a set of expert models that are different from each other
due to genetic operations and very fit for the task of classification.
Our system is scalable because instead of using all the expert
models to make a new prediction, it uses a small artificial neural
network (ANN). This network captures the knowledge of the
complex voting system and imitates the voting system’s output.
The result is a very fast network that emulates the behaviour of
the voting system. Our findings suggest that the ANN is better
in performance than using a single optimised model, it is faster
than using a classic voting system and it has a lower risk of error.

Code available at: https://github.com/kostas1515/siemans ai
competition

I. INTRODUCTION

Recent advancements in the field of machine learning and
artificial intelligence have improve the quality of life for many
people across the world. Applications like drug discovery, or
lab automation are some examples were machine learning
can benefit the health industry. Other applications such as
autonomous vehicles, can benefit the transportation industry.
Finally, smart voice assistants, chat bots and mobile phone
apps make our lives easier by giving us information before
even asking for it.Some sort of artificial intelligence already
exists in our daily lives without even noticing it and even
though we can enjoy the benefits it provides, we should also be
very aware about the risks it poses in security, personal privacy
and safety. As developers and consumers of these technologies,
we ought to be ethical and consider not only the benefits but
also the risks of these technologies. We think that the Siemens
AI challenge is a great example, to tackle the difficulties and
put our knowledge to the test, when it comes to safety critical
applications. We believe that this challenge is very relevant in
this period of time, when most things are done digitally and
they do not always require human intervention.

II. PROBLEM DEFINITION

This challenge, gives three target datasets (DA,DB ,DC) and
asks from the participants to develop a system that not only
makes good predictions but also provides an upper bound
for the misclassification error. This challenge is relevant in
safety critical applications and requires the construction of
autonomous systems that take decisions and minimise the risk
of error.

To give more details, the problem is a simple classification
problem that requires a system that distinguishes the green
from the blue points. These points can be represented as X =
[x0, x1], Y = −1, 1, where x0, x1 ∈ [0, 1] can be thought as
cartesian coordinates that belong to a unit square and y can
be thought as the class and which is either −1 or 1 (green or
blue).

Figures 1, 2, 3 are scatterplots of the datasets A,B,C
respectively. Given these we are requested to build a classifier
that should be able to assign a new data point p̄ into the
correct category. Furthermore, it should also provide an upper
bound for misclassification error. Finally, the solution should
be scalable with respect to more data and or dimensions. In
the next sections we will tackle these problems and explain
the methodology and the logic behind our ideas.

Fig. 1. Scatterplot of dataset DA. Blue dots correspond to class c = 1,
while the green dots correspond to class c = 0

III. PROPOSED SOLUTION

From the scatterplots, we can observe that the datasets
contain different quantities of data points, (DA contains 1000
points, DB contains 5000 points and DC contains 10000
points). Also, datasets A and B are balanced with respect
to class frequency, while dataset C displays a big imbalance.
Finally, we can also notice that the data distribution is different
for each dataset. Based on the above, we will develop three
distinct classifiers, (one for each dataset).

To optimise the classification performance we suggest the
use of genetic algorithms. To combat the complexity of each
dataset we deploy a voting system based on the genetic
algorithms. To combat the scalability aspect we distill the
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Fig. 2. Scatterplot of dataset DB . Blue dots correspond to class c = 1,
while the green dots correspond to class c = 0

Fig. 3. Scatterplot of dataset DC . Blue dots correspond to class c = 1,
while the green dots correspond to class c = 0

knowledge of our voting system to a small artificial neural
network (ANN), that is used to do real time inference. Finally,
to compute the upper bound for misclassification error we will
use the framework introduced by McAllaster in [1] In summary
our system, is a ANN that has learned to imitate the output of
a complex voting system of classifiers. These classifiers were
obtained by using genetic algorithms in order to ensure that
they are different from each other but also very optimal for
the task. To support our results theoretically we use the ”PAC-
Bayesian” theoretical framework [1], and provide the risk of
mis-classification in comparison to the risk of Gibbs classifier.

IV. THEORETICAL ANALYSIS FOR MISS-CLASSIFICATION
ERROR

The backbone of our pipeline uses a set of classifiers called
majority votes classifiers. They combine the predictions of
several independent experts to achieve better classification
performance based on the weighted sum of the independent
votes. If the combination of the votes is deterministic, the
algorithm approximates Bayes classifier, while if the output
is determined by a stochastic distribution, the algorithm can
be considered as a Gibbs classifier. Our approach is based
on a deterministic combination of the results provided by the
voting system. To obtain better results, we value every vote of

the voting system differently, according to the performance of
the ”voter-classifier” in the test set.

The main result of the McAllaster framework is the ”PAC-
Bayesian Theorem”, which bounds the risk of a Q-weighted
majority vote (Bayes classifier) by bounding the risk of the
associated Gibbs classifier. In this context Q is defined as the
posterior distribution over the space of classifier that considers
the information provided after the training of the algorithm.

A. PAC-Bayesian bound
In the proposed classification problem, we aim to determine

the input-output pair (x, y), where x = (x1, x2) belongs to the
real-valued input space X = [0, 1]×[0, 1], and y belongs to the
discrete space of the categories, y ∈ Ȳ = {−1, 1}. Each expert
(or voter) expresses the result of the binary classification by
the function e(x) : X → Y .

Suppose the training of the genetic algorithms provides a set
of weights f1i on the votes ei(x), i ∈ H space of the voters,
which defines a Q-weighted majority vote classifier. Given any
x ∈ X , the output of the classifier can be expressed by

BQ(x) = sign[Ee∼Qe(x)] (1)

We assume that the input-output pairs (x, y) are drawn i.i.d.
according to the distribution D. We can define the the Bayes
risk RD(BQ), also called risk of the majority vote, as as the
expected loss of the majority vote classifier BQ relative to the
distribution D on X × Y .

RD(BQ) = E(x,y)∼DI(BQ(x) 6= y) (2)

where I(a) = 1 if predicate a is true and 0 otherwise.
As said previously, we can use the stochastic equivalent of
the Bayes classifier to define a bound on the Bayes risk.
We call Gibbs classifier GQ the stochastic classifier that
randomly chooses a voter, identified with e, according to the
distribution Q and it returns e(x) as result of the classification
problem. The Gibbs risk corresponds to the probability that
GQ misclassifies an example (x, y) of distribution D:

RD(GQ) = E(x,y)∼DEe∼QI(e(x) 6= y) (3)

It is known that the risk of the (deterministic) majority vote
classifier is upper-bounded by twice the risk of the associated
(stochastic) Gibbs classifier [3].

R〈(x,y)〉(BQ) ≤ 2R〈(x,y)〉(GQ) (4)

V. THEORETICAL ANALYSIS OF CLASSIFICATION SYSTEM

In this section we will describe the details of the proposed
classification system. This system is built in three steps, first
we train multiple models using genetic algorithms and create
a set of expert models. In the second stage, we sample random
datapoints from the uniform distribution and create a synthetic
dataset DS . Next, every expert model makes predictions on this
synthetic dataset. We call these predictions, votes. Naturally,
our expert models will agree in the easy datapoints and will
vote for the same class, while they will disagree for the
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ambiguous datapoints. We can capture the rate of agreement by
taking the weighted mean of the votes for every datapoint. The
hypothesis is that the rate of agreement will be proportional
to the difficulty in predicting this datapoint. This difficulty can
be also seen as a proportionality of error. Now that we have
the set of expert models, it’s becoming apparent that for a new
datapoint we would have to consult all experts to get the final
results. This is very difficult and does not scale well. Instead
of this, we can model the vote agreement by training a small
neural network. This network captures the knowledge from all
expert models and learns how to evaluate the ambiguity of a
new datapoint. The end result is that for a new datapoint the
model produces two values one that represents the confidence
for the prediction being class 0 and another for class 1. Finally
we can compute the mis-classification risk of the ANN and
compare it with the Gibbs risk to set the mis-classification
upper bound.

Now that the main idea was presented, we can continue with
explaining the implementation process in detail. As described
our system development contains three steps. The first step is
the genetic algorithms deployment, the second is the synthetic
dataset creation and the third is the artificial neural network.

A. Genetic algorithms

We use genetic algorithms for two reasons, first to discover
good classifiers (experts) and second to ensure that these
experts are dissimilar from one another. Genetic algorithms
are inspired from biology and use genetic operations such as
crossover and mutation in order to refresh the population of
solutions. In each generation, every chromosome (or potential
solution-classifier) produces children solutions based on the
cross-over and mutation factors. The fitness function evaluates
the chromosomes in in the end of each generation and acts
as a natural selection for chromosomes that provide better
solutions. These chromosomes survive the natural selection
and continue to reproduce in the next generations. As we
understand, the choice of fitness function is very critical to
the end result.

1) Choice of fitness function: The challenge is mentioning
that different mis-classification errors have different costs. As
it explains, classifying green point as red in a traffic lights
intersection will cause minor inconvenience but classifying
a red point as green can cause a serious accident. A utility
function based on costs could be a valid fitness function but as
the costs are not explicitly stated by the organisers, we choose
a more standard fitness function which is the f1 measure
(Equation 5) . The f1 measure is the harmonic mean of
precision and recall, and it aims in producing solutions that
are better in predicting the correct class while making plenty
predictions. After all, we would not like a system that always
predicts red just because the green prediction is too risky.

F1 = 2
precision ∗ recall
precision+ recall

=
tp

1/2(fp+ fn) + tp
(5)

where tp are the true positives, fp are the false positives and
fn are the false negatives.

B. Synthetic dataset generation

In this step, we can use the experts models to generate
a synthetic dataset. To do so, we sample datapoints from
the uniform distribution and perform predictions for every
datapoint and for every expert model. Since every expert model
has different strength in it’s predictions we will multiply the
f1 measure with the prediction. In other words, the vote of
the expert ei, i ∈ {1 . . . n} index among the n voters, for a
synthetic datapoint p will be weighted by it’s f1i measure:

V (ei, p) = (1− ei(p)) ∗ f1i + (ei(p))(1− f1i)−
ei(p) ∗ f1i − (1− ei(p))(1− f1i)

(6)

where, p ∼ U , e(p) is the expert’s prediction and can be either
0 or 1, and V ∈ [−1, 1]. V can be also expressed in one-hot
encoding as in Eq.7:

Vonehot(e, p) = [(1− e(p)) ∗ f1e + (e(p))(1− f1e),

e(p) ∗ f1e + (1− e(p))(1− f1e)]
(7)

After that we can gather the weighted mean of all the expert’s
votes in a synthetic dataset to represent the ambiguity of data-
points:

V̄ (p) =
1

G

G∑
e=0

V (e, p) (8)

where G is the number of generations and e is the finalist
expert in the end of the generation.

In the next step we can use the synthetic dataset to distill
the knowledge of our complex voting system to a small ANN.

C. Knowledge distillation from voting system to ANN

The main reason for developing the ANN is scalability. It is
natural that if we keep adding an infinite number of classifiers
into our voting system we can max out the performance, the
scalability thought will suffer as for every new datapoint we
would have to consult all the voters-expert models. To tackle
this problem we train a small ANN that captures the knowledge
of our voting system.

1) ANN architecture: We keep the complexity of the ANN
very low. We design a fully-connected 6 layer feed-forward
network (Figure 4) with leaky relu activations (Eq. 13) for
the intermediate layers and sigmoid activation (Eq.10) for the
output layer.

lr(z) =

{
z if z ≥ 0
−0.1z if z < 0

(9)

σ(z) =
1

1 + exp(−z)
(10)
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Fig. 4. Architecture of the artificial neural network. The numbers represent
the numbers of neurons in each layer. The total number of trainable parameters
for this small ANN is 21K.

2) Training details: We train our network using Gradient
Descent with batch size equal to the whole dataset. We use
Adam optimiser with a custom learning rate schedule that starts
from 0.01 and reduces by a factor of 10 when it reaches certain
milestones. We choose the Mean Squared Error (MSE) Eq.11
as our loss function because it is simple and easy to converge.
Finally, we minimize the error between the one-hot encoded
mean vote V̄onehot and the network’s logits Z.

MSE(Z, V̄onehot) =
1

N

i=N∑
i=0

(σ(zi)− v̄ionehot)2 (11)

3) ANN output: We can represent the ANN as a function f
that learns how to model the behaviour of the complex voting
system. In more details, for a new data-point p it produces two
values c0 and c1 that represent the confidence of that point
belonging in class 0 and class 1 respectively. Note that c0 +
c1 6= 1 as these values are not probabilities.

f(p) = [c0, c1] (12)

D. Summary of proposed pipeline
In summary, the proposed pipeline starts with running the

genetic algorithm to extract the set of expert-voters classifiers,
(each classifier is discriminated by it’s performance which is
the f1 measure). In the next step the classifiers vote (with some
strength which is the f1 measure) on synthetic datapoints. We
gather the votes and take the mean according to Eq.8 and create
a synthetic dataset. Finally we train a small ANN based on this
synthetic dataset, in order to reduce the inference time of the
complex voting system. The whole pipeline can be illustrated
in Figure 5 . Next we will describe the empirical results that
we obtained by using the proposed system on the three given
datasets.

VI. ANALYSIS AND INTERPRETATION

A. Genetic Algorithms training details
We deploy genetic algorithms based on TPOT framework

in python to get the expert models.In our case we choose a
mutation rate of 0.9 and cross-over rate of 0.1. We set the
population size equal to 30 and we evolve for 100 generations.

Fig. 5. Visualisation of the recommended pipeline

In the end of every generation we get the best finalist after do-
ing 10-k cross validation on the validation set. This procedure
gathers expert models that are dissimilar from each other, due
to genetic operations, and they are incrementally better due to
optimisation. We store these experts-models along with their
achieved f1 measure and use them in the second step of the
pipeline.

B. Synthetic dataset plots
We use the pool of experts obtained from the previous step

to make predictions on 1 million random datapoints. We use
Eq.6 and 8 to produce scatter-plots for the three datasets. As
we can observe from the scatter-plots the mean is near zero
in areas of high uncertainty, like near the decision boundaries
Figures 6, 7, 8 or in extrapolated areas (see Figure 7 near the
[0, 0] or [1, 1] coordinates.)

Fig. 6. Scatterplot of synthetic dataset DSa, which is the output of
V̄ (p), ∀p ∈ DSa. Darker dots correspond to class c = 0, while the lighter
dots correspond to class c = 1

In the next step we will use the generated synthetic datasets
to train small ANNs that capture the knowledge of the voting
system.

C. ANN output plots
We train the ANN according to the details outlined in sec-

tion V-C2. To understand the ANN’s behaviour we randomly
sample 2562 data-points from the uniform distribution and we
pass them through the network. After that we probe c0 output
and we multiply it by 255 to create grey scale images.
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Fig. 7. Scatterplot of synthetic dataset DSb, which is the output of
V̄ (p), ∀p ∈ DSb. Darker dots correspond to class c = 0, while the lighter
dots correspond to class c = 1

Fig. 8. Scatterplot of synthetic dataset DSc, which is the output of
V̄ (p), ∀p ∈ DSc. Darker dots correspond to class c = 0, while the lighter
dots correspond to class c = 1

Fig. 9. Output of c0 for the model trained on synthetic dataset DSa. Lighter
colors are closer to 1 in amplitude while darker colors are closer to 0.

We can observe that the model can efficiently create bound-

Fig. 10. Output of c0 for the model trained on synthetic dataset DSb. Lighter
colors are closer to 1 in amplitude while darker colors are closer to 0.

Fig. 11. Output of c0 for the model trained on synthetic dataset DSc. Lighter
colors are closer to 1 in amplitude while darker colors are closer to 0.

aries and represent the ambiguity of the classes in the grey
spectrum, lighter values are close to 1 in amplitude while
darker are close to 0. Since the plots correspond to output c0
the darker values would correlate with class 1 and the lighter
with class 0. Apart from the difference in axis orientation,
the images very closely resemble the synthetic datasets. This
indicates that the ANN is able to accurately represent the
complex voting system. Also, the ANN displays a high degree
of smoothness in it’s predictions which is a desirable property
if one wants to extrapolate data outside of the unit square.

1) Strategies minimising the risk: The ANN produces two
outputs c0 and c1 which is the confidence of a prediction being
0 or 1 respectively. In scenarios when the mis-classification
cost differs, we can construct strategies to bias our predictions
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TABLE I. PERFORMANCE f1

Dataset A Dataset B Dataset C

Best Expert 0.9159 0.9953 0.9823
ANN 0.9708 0.9981 0.9942

based on that cost. For example we can choose the least risky
option when the ambiguity of a datapoint is above a certain
threshold. Mathematically, we can define the a strategy S to
pick the least risky option c0 if the datapoint p displays an
ambiguity greater that a threshold t:

S(p) =

{
max(c0, c1) if |c0 − c1| ≥ t
c0 if |c0 − c1| < t

(13)

In our approach we use t = 0 although our model can benefit
from different values of t that suit different classification
scenarios. In the next section we discuss the evaluation criteria.

VII. CRITERIA OF ASSESSMENT

We evaluate our method on three axis, on it’s classification
performance, on the bound of mis-classification error and
the scalability towards more data and dimensions. As noted
before, the f1 was used as a fitness function in the genetic
algorithms step V-A Therefore, it is only natural to select this
as the performance metric. Regarding the mis-classification
error bound, we will compare the risk of the Gibbs classifier
and the ANN as noted in Eq. 4. Finally for the scalability, we
will measure the inference time of the ANN against the time
of a single expert model.

A. Classification performance
As noted before, we report our results based on the f1

measure. We choose as a baseline the best model extracted
from the final generation of the genetic algorithm. This model
represents the best solution if we had to choose a single model
instead of an combination of voting classifiers. To get a better
approximation we do 10-k cross validation and take the mean
of f1 measure as the final performance indicator. The results
in Table I indicate that the ANN achieves better f1 measure
than the best expert-classifier. From this we can infer two
conclusions. Firstly, that the voting system is better than it’s
single counterparts. Secondly, that the ANN is able to imitate
the behaviour of such complex voting system.

B. Empirical study of the mis-classification bound
In this section, we investigate the theoretical bounds derived

in the previous section on the proposed classification algo-
rithm. First we calculate the Gibbs risk. To do so, we use our
voting system and randomly pick a vote as the final prediction.
Using Eq.3 we calculate the Gibbs error.

Next, we compute the risk of the ANN and report the results.
The results in Table III suggest that:
• the ANN has a lower risk than the Gibbs classifier
• the mis-classification bounds validate Eq. 4
• the ANN is a good approximation of the Bayes classifier

TABLE II. BOUNDS EVALUATION

Dataset A Dataset B Dataset C

ANN Risk 0.06 0.004 0.0028

Gibbs Risk 0.06852 0.00772 0.003872

TABLE III. LATENCY (S)

Dataset A Dataset B Dataset C

ANN-GPU 0.827 0.937 1.483

Expert-CPU 0.017 0.039 0.235

C. Scalability
In this section we discuss the merits of our approach with

respect to scalability. The key concept to tackle scalability
without compromising performance is the knowledge distilla-
tion to a small ANN. By making the problem more complex,
towards data and dimensions the model’s performance will not
decrease as long as we keep adding more voting components.
Once the desirable performance has been reached we can use
knowledge distillation to transfer all the complexity into a fast
shallow ANN. Our ANN processes a single datapoint in 0.48
seconds on an NVIDIA Quadro p4000, although it is able to
process more datapoints in parallel and thus reduces latency of
inference even further proportionally to the GPU memory. In
Table III we can notice that the proposed ANN is slower than
a random expert running on CPU. Even so, we notice that for
bigger datasets e.g B,C the CPU will have a steeper increase
in the computation time than that of the GPU ANN. Thus, we
can infer that by increasing the amount of data there will be a
point that the GPU ANN will outperform the CPU model in
latency. Thus we conclude that the ANN is suitable and more
scalable than a CPU counterpart.

VIII. CONCLUSIONS AND RECOMMENDATIONS

We presented a reliable and scalable solution to the proposed
classification problem. Our approach is based on the genetic
algorithms, which allow high classification performance and
provide an evaluation of the confidence, given by the rate of
disagreement between the experts. In order to achieve a higher
degree of scalability, we distilled the uncertainty computed by
the genetic algorithms in an ANN. With this approach, we
avoid querying all the experts for each data point, speeding-
up the execution of the classification algorithm. We proposed
to evaluate the misclassification error of our approach by
computing the PAC-Bayesian bound, defined on the stochastic
equivalent classifier of our deterministic majority vote system.
Unfortunately, the bound associated with the Gibbs (stochastic)
classifier is often far from being tight to the misclassification
error of a Bayes classifier, like the one we proposed in our
solution. The reason is that the PAC-Bayesian bound doesn’t
fully consider the compensation of the misclassification errors
of the single experts. A possible extension of our work would
consider tighter bounds of the misdetection error, like the C-
bound proposed by Germain et al. in [4]. Another extention
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could be to train the same ANN only using the real data so that
we can compare the benefits of the synthetic dataset generation
and knowledge distillation.

APPENDIX

The theorem presented by Germain in [4] states that, under
specific conditions, for any distribution Q on a set of voters
and any distribution D on X × {−1, 1}, we have

RD(BQ) ≤ CDQ (14)

where CDQ is the C-bound. Germain et al. show that the
C-bound can be decreased by reducing the Gibbs risk or
increasing the disagreement. It can be proved that the C-bound
can be arbitrary small by increasing the number of experts,
under specific conditions.
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